

Truly Subcubic Algorithms for Language Edit Distance and RNA Folding via Fast Bounded-Difference Min-Plus Product

Karl Bringmann, Fabrizio Grandoni, Barna Saha, Virginia Vassilevska Williams

June 11, 2017

Bounded Differences (BD) Matrices

Integer matrix *M* has **BD** if for all *i*, *j*:

 $|M[i,j] - M[i,j+1]| \le 1$ and $|M[i,j] - M[i+1,j]| \le 1$

2	2	3	2
1	1	2	3
2	1	2	3
1	0	1	2

More generally: W-BD when differences are at most W

(min,+) Product

For $n \times n$ -matrices A, B, their (min,+) product C = A * B is defined by

```
C[i,j] = \min_{k} A[i,k] + B[k,j]
```

(min,+) product is equivalent to All Pairs Shortest Paths

[Fischer, Meyer'71]

trivial algorithm: $O(n^3)$

best known algorithm: $n^3/2^{\Theta(\sqrt{\log n})}$

[Williams'14]

Standard matrix multiplication: C[i, j]

$$C[i,j] = \sum_{k} A[i,k] \cdot B[k,j]$$

time $O(n^{\omega})$ where $\omega \leq 2.373$

max planck institut informatik

(min,+) Product

For $n \times n$ -matrices A, B, their (min,+) product C = A * B is defined by

```
C[i,j] = \min_{k} A[i,k] + B[k,j]
```

(min,+) product is equivalent to All Pairs Shortest Paths [Fischer,Meyer'71]

trivial algorithm: $O(n^3)$

best known algorithm: $n^3/2^{\Theta(\sqrt{\log n})}$ [Williams'14]

Big Open Problem: Is (min,+) product in time $O(n^{3-\varepsilon})$ for some $\varepsilon > 0$?

Study special cases!

(min,+) Product for Structured Matrices

Matrices with small entries:

[Alon,Galil,Margalit'97]

If *A*, *B* have entries in $\{-T, ..., T\} \cup \{\infty\}$ then *A* * *B* can be computed in time $\tilde{O}(Tn^{\omega})$

Sketch:

$$C[i,j] = \min_{k} A[i,k] + B[k,j] \longrightarrow A'[i,j] = x^{A[i,j]}$$
$$C'[i,j] = \sum_{k} A'[i,k] \cdot B'[k,j]$$

C[i, j] = degree of highest monomial in C'[i, j]

(min,+) Product for Structured Matrices

Matrices with small entries:

[Alon,Galil,Margalit'97]

If *A*, *B* have entries in $\{-T, ..., T\} \cup \{\infty\}$ then *A* * *B* can be computed in time $\tilde{O}(Tn^{\omega})$

Matrices with few distinct entries:

[Yuster'09]

If each row of *A* has a *small* number of distinct entries, then for arbitrary *B* we can compute *A* * *B* in *truly subcubic* time

Question: Is (min,+) product in time $O(n^{3-\varepsilon})$ for BD matrices?

Why care about BD matrices?

1st Application: Language Edit Distance (LED)

for simplicity: |G| = O(1)

CFG Parsing:

Given a context-free grammar *G* and a string *s* of length *n*, is *s* in *L*(*G*)? ... is in time $\tilde{O}(n^{\omega})$ [L. Valiant'75]

Language Edit Distance: "error-correcting CFG parsing"

Given a CFG *G* and a string *s*, compute minimum edit distance of *s* to any string in L(G)

insertions, deletions, substitutions

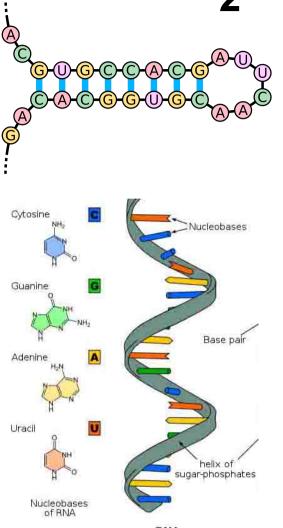
... is in time $O(n^3)$

[Aho,Peterson'72]

We show using Valiant's approach:

If (min,+) product on BD matrices is in time $O(n^{\alpha})$, then LED is in time $\tilde{O}(n^{\alpha})$ ~8 page proof

intuitive reason for BD: LED(s) and LED(sc) differ by ≤ 1 for any symbol c



Disclaimer: No author of this paper is a biologist.

2nd Application: RNA Folding

RNA can be seen as a sequence of symbols from {A,C,G,U}

Biologists want to predict the secondary structure of RNA:

A can pair with U, and C can pair with G

Given an RNA sequence, find the largest set of matching pairs, such that no two pairs intersect

AUUGCAG not allowed but **AUUGCAG** is okay

... is in time $O(n^3)$

[Nussinov,Jacobson'80]

... can be cast as a LED problem (without substitutions)

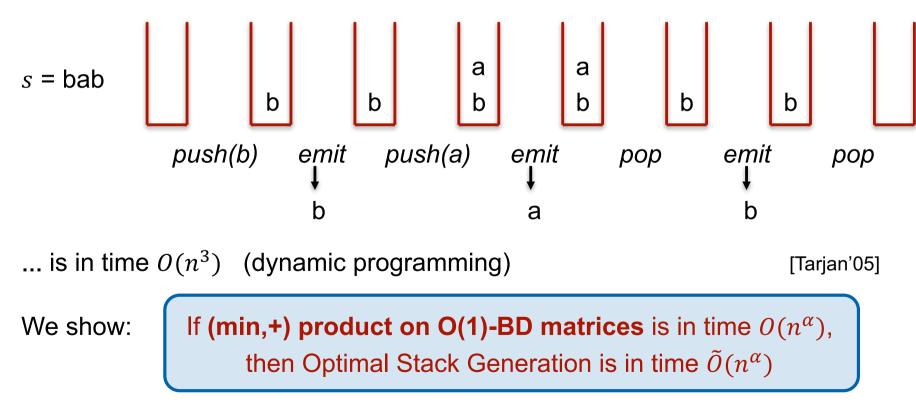
If (min,+) product on BD matrices is in time $O(n^{\alpha})$, then RNA Folding is in time $\tilde{O}(n^{\alpha})$

3rd Application: Optimal Stack Generation

for simplicity: $|\Sigma| = O(1)$

Optimal Stack Generation:

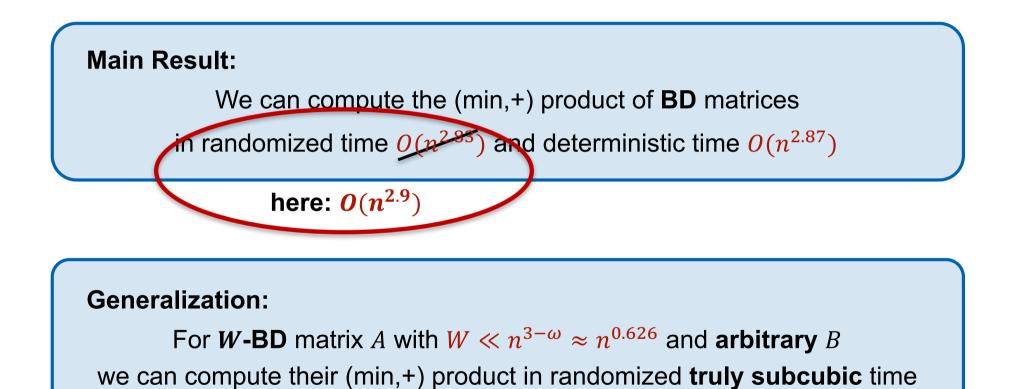
Given a string *s* over alphabet Σ , determine the shortest sequence of stack operations *push(.), emit, pop* s.t. performing these operations starting from an empty stack will emit *s* and end with an empty stack



intuitive reason for BD: OSG(s) and OSG(sc) differ by ≤ 3 for any $c \in \Sigma$

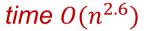
Main Result

... so we have seen that (min,+) product of BD matrices is well motivated



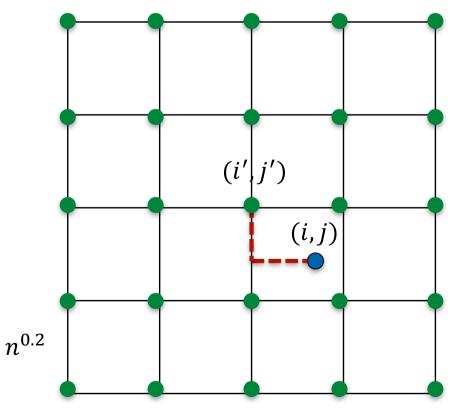
Input: BD matrices A, B. Want: $C[i, j] = \min_{k} A[i, k] + B[k, j]$

1) Compute approximation $D[i, j] = C[i, j] \pm O(n^{0.2})$



compute C[i, j] exactly for all i, j that are multiples of $n^{0.2}$ set D[i, j] to some C[i', j'] by rounding i, j

If A, B are BD, then their (min,+) product is also BD



Input: BD matrices A, B. Want: $C[i, j] = \min_{k} A[i, k] + B[k, j]$

1) Compute approximation $D[i, j] = C[i, j] \pm O(n^{0.2})$

 $A[i,k] + B[k,j] = C[i,j] \text{ implies } |A[i,k] + B[k,j] - D[i,j]| \le O(n^{0.2})$ call these triples (i,k,j) relevant

then $C[i, j] = \min_{k:(i,k,j) \text{ relevant}} A[i,k] + B[k,j]$

Input: BD matrices A, B. Want: $C[i, j] = \min_{k} A[i, k] + B[k, j]$

1) Compute approximation $D[i, j] = C[i, j] \pm O(n^{0.2})$

2) Cover most relevant triples:

fix i^* , j^* , and define matrices A^* , B^*

$$A^{*}[i,k] \coloneqq (A[i,k]) + B[k,j^{*}] - D[i,j^{*}]) - (A[i^{*},k] + B[k,j^{*}] - D[i^{*},j^{*}])$$
$$B^{*}[k,j] \coloneqq (A[i^{*},k] + B[k,j]) + D[i^{*},j])$$

(min,+) product C^* of A^* , B^* :

 $C^*[i,j] = \min_k A^*[i,k] + B^*[k,j] = C[i,j] - D[i,j^*] + D[i^*,j^*] - D[i^*,j]$

can be cancelled afterwards

(i, k, j) relevant: |A[i, k] + B[k, j] $- D[i, j]| \le O(n^{0.2})$

Input: BD matrices A, B. Want: $C[i, j] = \min_{k} A[i, k] + B[k, j]$

1) Compute approximation $D[i, j] = C[i, j] \pm O(n^{0.2})$

2) Cover most relevant triples:

fix i^* , j^* , and define matrices A^* , B^*

 $A^*[i,k] \coloneqq (A[i,k] + B[k,j^*] - D[i,j^*]) - (A[i^*,k] + B[k,j^*] - D[i^*,j^*])$

 $B^*[k,j] \coloneqq (A[i^*,k] + B[k,j] - D[i^*,j])$

if (i, k, j^*) , (i^*, k, j^*) , (i^*, k, j) are all relevant, then $|A^*[i, k]|$, $|B^*[k, j]| = O(n^{0.2})$ set all $\Omega(n^{0.2})$ -entries of A^* , B^* to ∞

then (min,+) product of A^* and B^* can be computed in time $\tilde{O}(n^{\omega+0.2})$ (*i*, *k*, *j*) is "covered" if $A^*[i, k]$ and $B^*[k, j]$ are $O(n^{0.2})$, i.e., not set to ∞

(i, k, j) relevant: |A[i, k] + B[k, j] $- D[i, j]| \le O(n^{0.2})$

Input: BD matrices A, B. Want: $C[i, j] = \min_{k} A[i, k] + B[k, j]$

- 1) Compute approximation $D[i, j] = C[i, j] \pm O(n^{0.2})$
- 2) Cover most relevant triples:

initialize $\hat{C}[i, j] \coloneqq \infty$ repeat for $O(n^{0.3} \log n)$ rounds: $\tilde{O}(n^{0.3})$ iterations pick i^* , j^* randomly $A^*[i,k] \coloneqq (A[i,k] + B[k,j^*] - D[i,j^*]) - (A[i^*,k] + B[k,j^*] - D[i^*,j^*])$ $B^{*}[k, j] \coloneqq (A[i^{*}, k] + B[k, j] - D[i^{*}, j])$ set all $\Omega(n^{0.2})$ -entries of A^*, B^* to ∞ time $O(n^{\omega+0.2}) = O(n^{2.6})$ compute (min,+) product $C^* = A^* * B^*$ $\hat{C}[i,j] \coloneqq \min\{\hat{C}[i,j], C^*[i,j] + D[i,j^*] - D[i^*,j^*] + D[i^*,j]\}$

Lem: After $O(n^{\rho} \log n)$ rounds there are $O(n^{3-\rho/3} + n^{2.5})$ $= O(n^{2.9})$ **uncovered relevant** triples w.h.p.

total time $\tilde{O}(n^{2.9})$

(i, k, j) relevant: |A[i,k] + B[k,j] $-D[i, j] \le O(n^{0.2})$

(i, k, j) is "covered" if $A^*[i, k]$ and $B^*[k, j]$ are $O(n^{0.2})$ in some round

Input: BD matrices A, B. Want: $C[i, j] = \min_{k} A[i, k] + B[k, j]$

1) Compute approximation $D[i, j] = C[i, j] \pm O(n^{0.2})$

2) Cover most relevant triples

3) Enumerate uncovered relevant triples:

"for each uncovered relevant (i, k, j):"

 $\hat{C}[i,j] \coloneqq \min\{\hat{C}[i,j], A[i,k] + B[k,j]\}$

now $\hat{\mathcal{C}}$ is correct output

(i, k, j) relevant: |A[i, k] + B[k, j] $- D[i, j]| \le O(n^{0.2})$

(i, k, j) is "covered" if $A^*[i, k]$ and $B^*[k, j]$ are $O(n^{0.2})$ in some round

Input: BD matrices A, B. Want: $C[i, j] = \min_{k} A[i, k] + B[k, j]$

1) Compute approximation $D[i, j] = C[i, j] \pm O(n^{0.2})$

2) Cover most relevant triples

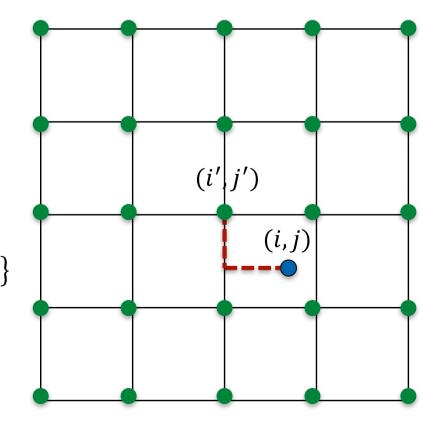
3) Enumerate uncovered relevant triples:

for all i', k', j' divisible by $n^{0.2}$: if (i', k', j') is relevant and uncovered: for all $i' - n^{0.2} < i \le i'$, $k' - n^{0.2} < k \le k'$, $j' - n^{0.2} < j \le j'$: $\hat{C}[i, j] \coloneqq \min\{\hat{C}[i, j], A[i, k] + B[k, j]\}$

now $\hat{\mathcal{C}}$ is correct output

(i, k, j) relevant: |A[i, k] + B[k, j] $- D[i, j]| \le O(n^{0.2})$

$$(i, k, j)$$
 is "covered"
if $A^*[i, k]$ and
 $B^*[k, j]$ are $O(n^{0.2})$
in some round



Input: BD matrices A, B. Want: $C[i, j] = \min_{k} A[i, k] + B[k, j]$

1) Compute approximation $D[i, j] = C[i, j] \pm O(n^{0.2})$

2) Cover most relevant triples

3) Enumerate uncovered relevant triples:

for all i', k', j' divisible by $n^{0.2}$: if (i', k', j') is relevant and uncovered: for all $i' - n^{0.2} < i \le i'$, $k' - n^{0.2} < k \le k'$, $j' - n^{0.2} < j \le j'$: $\hat{C}[i, j] \coloneqq \min\{\hat{C}[i, j], A[i, k] + B[k, j]\}$ now \hat{C} is correct output (i, k, j) relevant:|A[i, k] + B[k, j] $- D[i, j]| \le O(n^{0.2})$

(i, k, j) is "covered" if $A^*[i, k]$ and $B^*[k, j]$ are $O(n^{0.2})$ in some round

 $O(n^{2.4})$ iterations time $O(n^{0.3} \log n)$

either all or none are relevant and uncovered

total time O(n^{2.9})
= number of relevant
uncovered triples

total time of algorithm $\tilde{O}(n^{2.9})$

Correctness

Lem: After $O(n^{\rho} \log n)$ rounds there are $O(n^{3-\rho/3} + n^{2.5})$ **uncovered relevant** triples w.h.p.

If (i, k, j^*) , (i^*, k, j^*) , (i^*, k, j) are all relevant, then (i, k, j) is covered (i, k, j) relevant:|A[i, k] + B[k, j] $- D[i, j]| \le O(n^{0.2})$

(i, k, j) is "covered" if $A^*[i, k]$ and $B^*[k, j]$ are $O(n^{0.2})$ in some round

pick i^*, j^* randomly $A^*[i,k] \coloneqq (A[i,k] + B[k,j^*] - D[i,j^*]) - (A[i^*,k] + B[k,j^*] - D[i^*,j^*])$ $B^*[k,j] \coloneqq (A[i^*,k] + B[k,j] - D[i^*,j])$ set all $\Omega(n^{0.2})$ -entries of A^*, B^* to ∞ ...

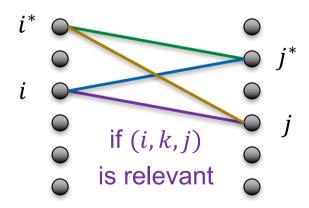
Correctness

Lem: After $O(n^{\rho} \log n)$ rounds there are $O(n^{3-\rho/3} + n^{2.5})$ **uncovered relevant** triples w.h.p.

If (i, k, j^*) , (i^*, k, j^*) , (i^*, k, j) are all relevant, then (i, k, j) is covered

When are (i, k, j^*) , (i^*, k, j^*) , (i^*, k, j) all relevant?

bipartite graph G_k :



we "cover" a relevant triple (i, k, j)if i, j, i^*, j^* form a 4-cycle in G_k

need: G_k contains many 4-cycles have: many relevant triples

Lem: Any bipartite graph with $m \ge 4n^{1.5}$ edges contains $\Omega(m^4/n^4)$ 4-cyles.

(*i*, *k*, *j*) relevant: |A[i, k] + B[k, j] $- D[i, j]| \le O(n^{0.2})$

(i, k, j) is "covered" if $A^*[i, k]$ and $B^*[k, j]$ are $O(n^{0.2})$ in some round

Algorithm Recap

Input: BD matrices A, B. Want: $C[i, j] = \min_{k} A[i, k] + B[k, j]$

- 1) Compute approximation $D[i, j] = C[i, j] \pm O(n^{0.2})$ compute C[i, j] exactly for all i, j that are multiples of $n^{0.2}$ set D[i, j] to some C[i', j'] by rounding i, j
- 2) Cover most relevant triples:

```
initialize \hat{C}[i,j] \coloneqq \infty

repeat for O(n^{0.3} \log n) rounds:

pick i^*, j^* randomly

A^*[i,k] \coloneqq (A[i,k] + B[k,j^*] - D[i,j^*]) - (A[i^*,k] + B[k,j^*] - D[i^*,j^*])

B^*[k,j] \coloneqq (A[i^*,k] + B[k,j] - D[i^*,j])

set all \Omega(n^{0.2})-entries of A^*, B^* to \infty

compute (min,+) product C^* = A^* * B^*

\hat{C}[i,j] \coloneqq \min\{\hat{C}[i,j], C^*[i,j] + D[i,j^*] - D[i^*,j^*] + D[i^*,j]\}
```

3) Enumerate uncovered relevant triples:

```
for all i', k', j' divisible by n^{0.2}:

if (i', k', j') is relevant and uncovered:

for all i' - n^{0.2} < i \le i', \ k' - n^{0.2} < k \le k', \ j' - n^{0.2} < j \le j':

\hat{C}[i, j] \coloneqq \min\{\hat{C}[i, j], A[i, k] + B[k, j]\}
```

(i, k, j) relevant: |A[i, k] + B[k, j] $- D[i, j]| \le O(n^{0.2})$

(i, k, j) is "covered" if $A^*[i, k]$ and $B^*[k, j]$ are $O(n^{0.2})$ in some round

Conclusion

we generalize the subcubic special cases of (min,+) matrix multiplication:

(min,+) product of **BD** matrices can be solved in rand. time $O(n^{2.83})$

this yields subcubic $O(n^{2.83})$ algorithms for:

- Language Edit Distance, a classic parsing problem from '72
- RNA Folding, a classic bioinformatics problem from '80
- Optimal Stack Generation, an open problem by Tarjan

Open Problems:

- 1) What is the right exponent?
 - [Abboud,Backurs,V-Williams15] Conditional lower bounds imply that LED and RNA Folding are in $\tilde{\Omega}(n^{\omega})$,

2) Find more applications of BD (min,+) product